ASSIGNMENT SET - I

Mathematics: Semester-IV

M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-405A

Paper: Operational Research Modelling-II

Answer all the questions

- 1. In a certain community 25% of all girls are blondes and 75% of all blondes have blue eyes. Also 50% of all girls in the community have blue eyes. If you know that a girl has blue eyes, how much additional information do you get by being informed that she is blonde?
- 2. What is channel matrix? State fundamental theorem of information theory.
- 3. State and Proof the additive property of entropy function.
- 4. Obtain reliability over 100 hours period of a system consisting of two subsystems A and B connected in parallel where A consists of 4 identical components in series and B consists of 3 identical components in parallel. Each component has a reliability 0.90 over a period of 100 hours.
- 5. Show that R (t) = exp $\left[-\int_0^t \lambda(t)dt\right]$, where (t) is the reliability function and (t) represents the failure rate. What is mean time between failure ?
- 6. Find the curve x = (t) which minimizes the function $J = \int_0^1 (\dot{x}^2 + 1) dt$ where (0) = 1 and x(1) = 2.
- 7. Describe the Pontryagin's Maximum Principle.
- 8. What is memory less channel? Discuss about measure of information.
- 9. The failure rate of an electronic subsystem is 0.0005 failure/hour. If a operational period of 500 hours with probability of success 0.95 is desired. What label of parallel redundancy is needed?
- 10. What is joint entropy? Prove that $H(X,Y) \le H(X) + H(Y)$ with equality iff X and Y are independent.

- 11. Obtain reliability over 100 hours period of a system consisting of two subsystems A and B connected in parallel where A consists of 4 identical components in series and B consists of 3 identical components in parallel. Each component has reliability 0.90 over a period of 100 hours.
- 12. Show that the entropy of the following probability distribution of the events $x_1, x_2, \dots, x_i, \dots, x_{n-1}, x_n$ with probability $\frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^i}, \dots, \frac{1}{2^{n-1}}, \frac{1}{2^{n-1}}$.
- 13. Describe the Bang Bang control and illustrate it with the help of an example.
- 14. Consider a binary channel with input symbols $A=\{0, 1\}$, output symbols $B=\{0, 1\}$ and

the channel matrix $\begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{9} & \frac{8}{9} \end{bmatrix}$. The input probabilities $p_{10} = \frac{4}{5}$, $p_{20} = \frac{1}{5}$ Find the

conditional backward input probabilities and joint probabilities. State fundamental theorem of information theory.

- 15. In a system, there are n number of components connected in parallel with reliability $R_i(t)=n$, i=1, 2, ... n. Find the reliability of the system. If $R_1(t) = R_2(t) = \dots = R_n(t) = e^{-\lambda t}$. Then find the reliability of the system.
- 16. Let X_n be a particular event with probability p_n is distributed into m mutually exclusive sub-events Y_1 , Y_2 ... Y_m with probabilities q_1 , q_2 ... q_m respectively, such that $p_n = q_{1+q_2+...+q_m}$ then

$$H(p_1, p_2, \dots, p_{n-1}, q_1, q_2, \dots, q_m) = H(p_1, p_2, \dots, p_{n-1}, p_n) + p_n H(\frac{q_1}{p_n} + \frac{q_2}{p_n} + \dots + \frac{q_m}{p_n}).$$

17. An electrochemical system is characterized by the ordinary differential equation $\frac{dx_1}{dt} = x_2$ and $\frac{dx_2}{dt} + x_2 = u$ where u is the control variable chosen in such a way that the cost function $\frac{1}{2}\int_{0}^{a} (x_1^2 + 4u^2)dt$ is minimized. Show that if the boundary conditions

satisfied by the state variables are x1(0) = a, x2(0) = b, where a, b are constants and

 $x_1 \rightarrow 0, x_2 \rightarrow 0$ as $t \rightarrow \infty$, the optimal choice for u is $u = -\frac{1}{2}x_1(t) + (1 - \sqrt{2})x_2(t)$.

- 18. Draw the diagram of a communication system mentioning all the important components including noise system.
- 19. Define entropy function and explain its importance.

End